Khảo sát hàm số là chuyên đề không khó với nhiều học sinh. Đây cũng là 1 chuyên đề mà có thể nhiều bạn cảm thấy thích thú. Tuy nhiên cũng còn khá nhiều em chưa hiểu rõ và nhớ được các bước khảo sát hàm số bậc 2, trong bài viết này sẽ hướng dẫn chi tiết các bước khảo sát hàm bậc 2, vận dụng vào bài tập để các em hiểu rõ hơn.
TXĐ : D = R.
Tọa độ đỉnh I (-b/2a; f(-b/2a)). f(-b/2a) = -Δ/4a
Trục đối xứng : x = -b/2a
Tính biến thiên :
a > 0 hàm số nghịch biến trên (-∞; -b/2a). và đồng biến trên khoảng (-b/2a; +∞)
a < 0 hàm số đồng biến trên (-∞; -b/2a). và nghịch biến trên khoảng (-b/2a; +∞)
Bảng biến thiên :
a > 0
a < 0
Đồ thị :
Đồ thị hàm số ax 2 + bx + c là một đường parabol (P) có: Đỉnh I (-b/2a; f(-b/2a)).
Trục đối xứng : x = -b/2a. Parabol (P) quay bề lõm lên trên nếu a > 0, parabol (P) quay bề lõm xuống dưới nếu a < 0.
Bài 2 trang 49 SGKCB :lập bảng biến thiên và vẽ đồ thị hàm số :
a)y = 3x2 – 4x + 1
d)y = -x2 + 4x – 4
a)y = 3x2 – 4x + 1 ( a = 3; b =-4; c = 1)
TXĐ : D = R.
Tọa độ đỉnh I (2/3; -1/3).
Trục đối xứng : x = 2/3
Tính biến thiên :
a = 3 > 0 hàm số nghịch biến trên (-∞; 2/3). và đồng biến trên khoảng 2/3 ; +∞)
bảng biến thiên :
(P) giao trục hoành y = 0 : 3x2 – 4x + 1 = 0 <=> x = 1 v x = ½ Các điểm đặc biệt :
(P) giao trục tung : x = 0 => y = 1
Đồ thị :
Đồ thị hàm số y = 3x2 – 4x + 1 là một đường parabol (P) có:
d) y = -x2 + 4x – 4
TXĐ : D = R.
Tọa độ đỉnh I (2; 0).
Trục đối xứng : x = 2
Tính biến thiên :
a = -1 < 0 hàm số đồng biến trên (-∞; 2). và nghịch biến trên khoảng 2 ; +∞)
bảng biến thiên :
Các điểm đặc biệt :
(P) giao trục hoành y = 0 : -x2 + 4x – 4 = 0 <=> x = 2
(P) giao trục tung : x = 0 => y = -4
Đồ thị :
Đồ thị hàm số y = -x2 + 4x – 4 là một đường parabol (P) có:
parabol (P) quay bề lõm xuống dưới .
BÀI 1 :
Cho hàm số :y = f(x) = ax2 + 2x – 7 (P).
Tìm a để đồ thị (P) đi qua A(1, -2)
Giải:
Ta có : A(1, -2) ∈(P), nên : -2 = a.12 + 2.1 – 7 ⇔ a = 3
Vậy : y = f(x) = 3x2 + 2x – 7 (P)
BÀI 2 :
Cho hàm số :y = f(x) = ax2 + bx + c (P).
Tìm a, b, c để đồ thị (P) đi qua A(-1, 4) và có đỉnh S(-2, -1).
Giải:
Ta có : A(-1, 4) ∈ (P), nên : 4 = a – b + c (1)
Ta có : S(-2, -1) ∈ (P), nên : -1 = 4a – 2b + c (2)
(P) có đỉnh S(-2, -1), nên : xS = -b/2a ⇔ 4a – b = 0 (3)
Từ (1), (2) và (3), ta có hệ : a-b+c=4 và 4a-2b+c=-1 và 4a-b=0
Giải hệ này được: a=5; b=20; c=19
Vậy : y = f(x) = 5x2 + 20x + 19 (P)
BÀI 1 :
cho hàm số bậc hai : y = f(x) = x2 + 2mx + 2m – 1 (Pm). đường thẳng (d) : y = 2x – 3
BÀI 2 :
Cho hàm số :y = f(x) = ax2 + bx + 3 (P). tìm phương trình (P) :
BÀI 3 : y = f(x) = x2 – 4|x| (P)
Bài 4 : y = f(x) = -2x2 +4x – 2 (P) và (D) : y = x + m.
Hy vọng rằng với phần hướng dẫn chi tiết về hàm số bậc 2, cách vẽ đồ thị hàm số bậc 2 ở trên, các em đã hiểu rõ cách làm và vận dụng giải toán, chúc các em học tốt.
- Giáo án bài Khái quát VHVN từ đầu thế kỉ XX đến Cách mạng tháng Tám 1945
- Luyện tập tính chất hóa học của nhóm halogen, hợp chất halogen và bài tập – hóa 10 bài 26
- Đề đọc hiểu về bài hát Khát vọng Phạm Minh Tuấn
- Nghị luận xã hội : Cho và nhận
- Đề đọc hiểu : Mùa xuân nho nhỏ- Thanh Hải